Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Science of the Total Environment ; 858, 2023.
Article in English | Scopus | ID: covidwho-2240485

ABSTRACT

Atmospheric black carbon (BC) concentration over a nearly 5 year period (mid-2017–2021) was continuously monitored over a suburban area of Orléans city (France). Annual mean atmospheric BC concentration were 0.75 ± 0.65, 0.58 ± 0.44, 0.54 ± 0.64, 0.48 ± 0.46 and 0.50 ± 0.72 μg m−3, respectively, for the year of 2017, 2018, 2019, 2020 and 2021. Seasonal pattern was also observed with maximum concentration (0.70 ± 0.18 μg m−3) in winter and minimum concentration (0.38 ± 0.04 μg m−3) in summer. We found a different diurnal pattern between cold (winter and fall) and warm (spring and summer) seasons. Further, fossil fuel burning contributed >90 % of atmospheric BC in the summer and biomass burning had a contribution equivalent to that of the fossil fuel in the winter. Significant week days effect on BC concentrations was observed, indicating the important role of local emissions such as car exhaust in BC level at this site. The behavior of atmospheric BC level with COVID-19 lockdown was also analyzed. We found that during the lockdown in warm season (first lockdown: 27 March–10 May 2020 and third lockdown 17 March–3 May 2021) BC concentration were lower than in cold season (second lockdown: 29 October–15 December 2020), which could be mainly related to the BC emission from biomass burning for heating. This study provides a long-term BC measurement database input for air quality and climate models. The analysis of especially weekend and lockdown effect showed implications on future policymaking toward improving local and regional air quality as well. © 2022 Elsevier B.V.

2.
Bull Math Biol ; 84(12): 146, 2022 Nov 11.
Article in English | MEDLINE | ID: covidwho-2117226

ABSTRACT

The statistics of COVID-19 cases exhibits seasonal fluctuations in many countries. In this paper, we propose a COVID-19 epidemic model with seasonality and define the basic reproduction number [Formula: see text] for the disease transmission. It is proved that the disease-free equilibrium is globally asymptotically stable when [Formula: see text], while the disease is uniformly persistent and there exists at least one positive periodic solution when [Formula: see text]. Numerically, we observe that there is a globally asymptotically stable positive periodic solution in the case of [Formula: see text]. Further, we conduct a case study of the COVID-19 transmission in the USA by using statistical data.


Subject(s)
COVID-19 , Humans , Computer Simulation , COVID-19/epidemiology , Models, Biological , Mathematical Concepts , Basic Reproduction Number
3.
Science of The Total Environment ; : 159905, 2022.
Article in English | ScienceDirect | ID: covidwho-2096018

ABSTRACT

Atmospheric black carbon (BC) concentration over a nearly 5 year period (mid-2017–2021) was continuously monitored over a suburban area of Orléans city (France). Annual mean atmospheric BC concentration were 0.75 ± 0.65, 0.58 ± 0.44, 0.54 ± 0.64, 0.48 ± 0.46 and 0.50 ± 0.72 μg m−3, respectively, for the year of 2017, 2018, 2019, 2020 and 2021. Seasonal pattern was also observed with maximum concentration (0.70 ± 0.18 μg m−3) in winter and minimum concentration (0.38 ± 0.04 μg m−3) in summer. We found a different diurnal pattern between cold (winter and fall) and warm (spring and summer) seasons. Further, fossil fuel burning contributed >90 % of atmospheric BC in the summer and biomass burning had a contribution equivalent to that of the fossil fuel in the winter. Significant week days effect on BC concentrations was observed, indicating the important role of local emissions such as car exhaust in BC level at this site. The behavior of atmospheric BC level with COVID-19 lockdown was also analyzed. We found that during the lockdown in warm season (first lockdown: 27 March–10 May 2020 and third lockdown 17 March–3 May 2021) BC concentration were lower than in cold season (second lockdown: 29 October–15 December 2020), which could be mainly related to the BC emission from biomass burning for heating. This study provides a long-term BC measurement database input for air quality and climate models. The analysis of especially weekend and lockdown effect showed implications on future policymaking toward improving local and regional air quality as well.

4.
Influenza Other Respir Viruses ; 15(1): 91-98, 2021 01.
Article in English | MEDLINE | ID: covidwho-688947

ABSTRACT

BACKGROUND: Respiratory viral infections account for a substantial fraction of pediatric emergency department (ED) visits. We examined the epidemiological patterns of seven common respiratory viruses in children presenting to EDs with influenza-like illness (ILI). Additionally, we examined the co-occurrence of viral infections in the accompanying adults and risk factors associated with the acquisition of these viruses. METHODS: Nasopharyngeal swab were collected from children seeking medical care for ILI and their accompanying adults (Total N = 1315). Study sites included New York Presbyterian, Bellevue, and Tisch hospitals in New York City. PCR using a respiratory viral panel was conducted, and data on symptoms and medical history were collected. RESULTS: Respiratory viruses were detected in 399 children (62.25%) and 118 (17.5%) accompanying adults. The most frequent pathogen detected was human rhinovirus (HRV) (28.81%). Co-infection rates were 14.79% in children and 8.47% in adults. Respiratory syncytial virus (RSV) and parainfluenza infections occurred more often in younger children. Influenza and HRV occurred more often in older children. Influenza and coronavirus were mostly isolated in winter and spring, RSV in fall and winter and HRV in fall and spring. Children with HRV were more likely to have history of asthma. Adults with the same virus as their child often accompanied ≤ 2-year-old-positive children and were more likely to be symptomatic compared to adults with different viruses. CONCLUSIONS: Respiratory viruses, while presenting the same suite of symptoms, possess distinct seasonal cycles and affect individuals differently based on a number of identifiable factors, including age and history of asthma.


Subject(s)
Emergency Service, Hospital , Respiratory Tract Infections/epidemiology , Virus Diseases/epidemiology , Adolescent , Adult , Asthma/virology , Child , Coinfection/epidemiology , Female , Humans , Infant , Infant, Newborn , Influenza, Human/epidemiology , Male , Paramyxoviridae Infections/epidemiology , Picornaviridae Infections/epidemiology , Respiratory Syncytial Virus Infections/epidemiology , Rhinovirus , Seasons , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL